Project ACRN: A Comprehensive Overview

Last updated: January 19, 2021
Content

- Introduction
- Architecture
- Value Proposition
- Key Capabilities
- Scenarios
Introduction

ACRN™ is a flexible, lightweight reference hypervisor, built with real-time and safety-criticality in mind, optimized to streamline embedded development through an open source platform.

- A Linux Foundation Project Launched in March 2018
- Version 1.0 released in May 2019
- Version 2.0 released in June 2020
Overall architecture

ACRN is a registered trademark of the Linux Foundation. *Other names and brands may be claimed as the property of others.
Value Proposition - ACRN

Small Footprint
- Optimized for resource-constrained devices
- Small codebase: less than 40,000 vs. >156,000 lines of code for datacenter-centric hypervisors

Functional Safety & Hard Real-time
- Heterogeneous Workloads Consolidation
- Supports also the most demanding workloads: safety-critical and real-time

Open-source with Flexible License
- Permissive BSD license enables proprietary Guest OS
- Business-friendly to adopt, modify and integrate
- True open source with a vibrant Community

ACRN reduces system deployment complexity, enables heterogeneous architectures, and provide TCO advantages
Key Capabilities

Hard Real-time
Support hard or soft RT VM
Optimized for RT, e.g. no VMExit*, cache isolation

Rich I/O Mediation
Graphics, Audio, USB…
Industry standard Virtio BE/FE drivers

Flexible Architecture
Partition Mode, Sharing mode
Hybrid (mix of partition & share) mode

Various Guest OSes Support

Secure Container
Kata Containers enabled for starting isolated and secure containers

Functional Safety
MISRA-C Compliance
FuSa certification targeted

Security & Isolation
Full isolation for mixed criticality workloads
Intel VT backed isolation
Secure boot

Permissive Open Source License
Permissive BSD-3-clause license
Linux Foundation Affiliation

System Manageability
Flexible VM lifecycle Management
Virtualization API supported (libvirt)

Ease of use
ACRN configuration tool
Rich documentation
Multiple-channel community support

*Other names and brands may be claimed as the property of others
ACRN™ & OSV/ISV Vendors

Project’s Goal
Provide an embedded hypervisor reference solution to enable OSV/ISVs

A transparent enabler that provides:
• A common architecture to be used as-is
• A high quality reference stack optimized for embedded development

Productize on top of ACRN directly by adding value with:
• Proprietary Service VM or RTOS
• Commercial Licensing
• Commercial Support

Move the industry towards faster TTM
Key Challenges:

- **Mixed Workloads:**
 - Real-Time vs non Real-Time
 - Isolation vs Sharing

- **Real-Time (Hard / Soft)**
 - GBE packet IO control loop < 12us
 - MSI interrupt latency < 4us
 - Cyclic test jitter < 10us

- **HMI**
 - Windows 10
Hybrid

Key Challenges:

- **Mixed Workloads:**
 - Safety-Critical and normal workloads
 - Isolation and Sharing

- **Functional Safety**
 - IEC 61508-3 (Industrial)
Hybrid Real-Time

Service VM

Device Model

User VMs

ACRN hypervisor

Key Challenges:

- **Mixed Workloads:**
 - Real-Time and normal workloads
 - Isolation and Sharing

- **Real-Time (Hard / Soft):**
 - GBE packet IO control loop < 12us
 - MSI interrupt latency < 4us
 - Cyclic test jitter < 10us
Logical Partition

ACRN hypervisor

Pre-launched Safety/RTVM

User VM

PLC

Robotics

Pre-launched Safety/RTVM

User VM

PLC

Robotics
Open Source with Flexible Licensing

- Scalable support
- Significant R&D and development cost savings
- Transparent open source development model
- Collaborative SW development with industry leaders
- Permissive BSD licensing
- Support hard or soft Real-Time VMs (RTVMs)
- No VMEXIT during runtime operations
- Highly optimized for RT:
 - LAPIC passthrough
 - RDT for resources isolation (cache and memory)
 - PCI device passthrough
 - Static CPU assignment
- Still use EPT and VT-d for VM isolation
System Manageability

VM Type & Severity:
- Load Order: Pre-launched, Service VM, Post-launched
- Category of VM: Service VM, User VM (can be pre-launched or post-launched)
- Severity: Safety VM > Hard RT VM > Soft RT VM > Service VM > Standard VM

HW Resource:
- CPU, memory & cache, devices, etc
- Partitioning or sharing based on VM type & severity

System Management:
- HW resources statically assigned at build time or dynamically assigned during runtime
- ACRN configuration tool: offline tool
- General reference design for VM & system lifecycle management
- Virtualization API: libvirt
System Security

<table>
<thead>
<tr>
<th>Secure Boot</th>
<th>Isolation</th>
<th>Runtime Security</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Measured Boot</td>
<td>• Isolation for mixed criticality workloads</td>
<td>• Virtual TPM</td>
</tr>
<tr>
<td>• Verified Boot</td>
<td>• Intel Virtualization technologies: VT-x, VT-d</td>
<td>• Trusty</td>
</tr>
<tr>
<td></td>
<td>• Kata Containers</td>
<td>• Supervisor-Mode Access Prevention</td>
</tr>
<tr>
<td></td>
<td>• EPT memory Isolation</td>
<td>(SMAP)</td>
</tr>
<tr>
<td></td>
<td>• Interrupt isolation</td>
<td>• Supervisor-Mode Execution Prevention</td>
</tr>
<tr>
<td></td>
<td>• Cache Allocation Technology (CAT)</td>
<td>(SMEP)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Software Guard Extension (SGX)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Dynamic Application Loader (DAL)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Total Memory Encryption (TME)</td>
</tr>
</tbody>
</table>
Rich I/O Mediation

- **I/O device mediators**

<table>
<thead>
<tr>
<th></th>
<th>GPU</th>
<th>Ethernet</th>
<th>Block</th>
<th>Audio</th>
<th>IPU</th>
<th>I2C</th>
<th>GPIO</th>
<th>Touch</th>
<th>USB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mediated Pass thru</td>
<td>Virtio</td>
<td>Virtio</td>
<td>Virtio</td>
<td>Virtio</td>
<td>Virtio</td>
<td>Virtio</td>
<td>Virtio</td>
<td>Emu.</td>
<td></td>
</tr>
</tbody>
</table>

- **Various security virtualization features**

<table>
<thead>
<tr>
<th></th>
<th>RPMB</th>
<th>CSE</th>
<th>TPM</th>
<th>Android Trusty</th>
<th>Verify Boot</th>
<th>Seed</th>
<th>SGX</th>
</tr>
</thead>
</table>

- **PCI devices pass-through (VT-d) capability too**
Diverse Guest OSes Supported

- Ubuntu
- Android
- Real-Time Linux
- VxWorks
- Windows 10
- Zephyr Project
- Xenomai
- Yocto Project
Ease of Use

Fast Development
- Short Learning Curve
- Straight-forward coding styles
- Multiple-channel Community (Mailing list, WeChat, TCM, etc)

Easy Deployment
- Out-of-Box Experience
- VM Configuration Tool
- CPU assignment
- I/O sharing or pass-through
- Pre-defined Configuration
- Rich supported OS types
- Orchestration
- OTA

Rich Documentation
- Getting Started Guide
- Architecture & Design
- Contributing Guides
- Tutorial
- Release notes

Flexible License
- BSD license for Hypervisor & Device models
- Dual Licenses for the ACRN Linux kernel drivers
Fin