ACRN

ACRN Open Source Roadmap 2019

Intel Open Source Technology Center

WW08.3'19

ACRN Open Source Roadmap in 2019

		*Feature and dates for reference of	nly	and subject to change without notices	3				
Area		V1.0@Q1'19		Q2'19		Q3'19		Q4'19	2020
нw	•	APL NUC (UEFI)	•	APL NUC (UEFI)	•	APL NUC (UEFI)	•	APL NUC (UEFI)	
	•	KBL NUC (UEFI)	•	KBL NUC (UEFI)	•	KBL NUC (UEFI)	•	KBL NUC (UEFI)	
	•	APL UP2 (SBL)	•	APL UP2 (SBL)	•	APL UP2 (SBL)	•	APL UP2 (SBL)	
					•	Denverton SoC	•	Denverton SoC	
Hypervisor	•	Power Management (S3/S5)	• V	VxWorks as Guest	•	Real-Time for Preempt-RT Linux Real-Time for Pseudo Locking Real-Time profiling tool	•	Windows as guest	
	•	ACRN partition mode	•	Zephyr as Guest ACRN Real-Time baseline ACRN Hybrid mode			•	Zephyr as Safety OS CPU sharing Docker support based on Kata	
	•	Local APIC passthrough	•		•				
	•	Real-Time VM support			•				
			•	OVMF for Clear Linux Guest support	•	Real-Time Performance optimization		Containers	
				IOMMU interrupt remapping	•	Kata Container support			
				VM Configuration Unify	•	OVMF GOP driver for GVT-g			
				vivi configuration offiny	•	Device Posted Interrupt(PI)			
					•	Multiple IOAPIC support			
I/O virtualization	•	GPIO virtualization	•	SR-IOV for share mode	•	USB hub virtualization	•	Kubernetes support based on Kata Containers	
	•	QoS – Support RunC	•	HPET Virtualization					
	•	TPM2.0 Sharing (Security)		Open vSwitch			•	GVT-g Gen11 support	
			•	I2C virtualization			•	GVT-g for Windows as Guest	

ACRN Look Ahead in 2019

2019 will be an exciting year for project ACRN. Several big things are planned:

- By early Q2, we'll welcome **ACRN v1.0** and provide a stable software reference for Software-Defined-Cockpit (SDC) usage on Intel Apollo Lake platforms.
- Real-Time OS will be supported, opening use of ACRN in industrial scenarios needing low latency, and fast, predictable responsiveness. Initial support is for VxWorks and Zephyr OS as Real-Time guest OSes in Q2, and PREEMPT-RT Linux in Q3.
- A new ACRN Hybrid Mode will be completed in Q2, giving ACRN the ability to run mixed-criticality workloads. For
 example, running a Real-Time Guest OS with a time sensitive application and dedicated hardware resources assigned,
 together with a normal priority Guest OSes (UOS) running with with Service OS (SOS) and sharing the remaining
 hardware devices.
- Windows as Guest (WaaG) will be officially supported in Q4, but you will see incremental features merged before that.
 For example, we'll sool introduce a virtual boot loader, OVMF, that enables UEFI support for Virtual Machines required for supporting WaaG.
- Kata Containers will be supported in Q3. <u>Kata Containers</u> is an open source project and community working to build a
 standard implementation of lightweight Virtual Machines (VMs) that feel and perform like containers, but provide the
 workload isolation and security advantages of VMs.
- More I/O device virtualization will be implemented to enrich ACRN's IoT device hypervisor capability, including GPIO virtualization in Q1, I2C virtualization in Q2 and Intel GPU Gen11 support in Q4.
- **CPU sharing** will be a big thing for ACRN. Typically used for embedded systems, a partitioned CPU will be assigned to a Guest VM to benefit the isolation and fast response from hardware. There's also a requirement for non-critical usage for sharing CPU cores among multiple VMs to better support Kata container.
- Functional Safety (FuSa) certification process will be applied to ACRN core feature development, and ultimately help ACRN be deployed in industrial or automotive (SDC) uses.

^{*}More details can be found in "ACRN Open Source Roadmap 2019"

2019 ACRN Roadmap Feature Description

ACRN partition mode: Guest VM is created and launched from hypervisor with partitioned hardware resource (CPU, Memory, pass-through devices etc.)

Local APIC pass-through: To pass-through most of local APIC MSRs to Guest VM and deliver IRQ to Guest VM directly without needing vmexit.

Real-Time VM support: To support the Real-Time VM's power lifecycle (e.g. boot/reboot/poweroff), need to complete LAPIC passthru, ioreq completion polling, and virtio-PMD.

QoS - Support RunC: Run ACRN DM Device Model (acrn-dm) inside a container (runc) to guarantee the QoS for the VM's I/O.

TPM2.0 Sharing: Trusted Platform Module 2.0 virtualization on ACRN.

Real-time baseline: basic real-time support, it provides the baseline for future real-time enhancement and performance tuning.

OVMF for Clear Linux support: Open Virtual Machine Firmware (OVMF) will be used as virtual VM bootloader on ACRN. OVMF will boot ClearLinux as a User OS (UOS)

<u>IOMMU interrupt remapping</u>: Enable IOMMU interrupt remapping for pass-through devices to ensure they only send their interrupts to the processor they are supposed to, even if the device is misbehaving.

ACRN Hybrid mode: ACRN hypervisor can create and launch pre-defined guest(s) and the Service OS (SOS) with partitioned hardware resource. The SOS can create & launch additional UOS Guests through its Device Model (DM). Two types of Guests can co-exist, pre-defined guest(s) and those managed by the SOS (acrn-dm)

<u>VM Configuration unification</u>: Both hypervisor & DM can launch Guests with same VM configuration structure, and an offline tool will be used to create VM configuration structure info for hypervisor-launched Guests, similarly DM will create VM configuration structure info for the guests which it launches.

SR-IOV for sharing mode: To support passing through virtual function of SR-IOV device in sharing mode.

HPET Virtualization: Add HPET virtualization in ACRN-DM, prepare for removing legacy device.

Open vSwitch: Enable Open vSwitch kernel module in SOS as a bridge, to which NICs inside VMs are connected.

Real-Time for PPREEMPT_RT Linux: PREEMPT_RT Linux will run as ACRN RT VM guest, with soft real-time performance.

Real-Time for Pseudo Locking: The RT VM guest can lock the real-time critical data or instructions into the cache by leveraging the Intel CAT technology.

Kata Containers support: enable Kata containers on ACRN.

OVMF GOP driver for GVT-g: OVMF GOP doesn't support GVT-g, this feature is to support GVT-g in OVMF GOP, so we can use OVMF console with GVT-g.

Device PI (posted interrupt): VT-d posted interrupt allows the PCI device interrupt to be injected to the Guest without hypervisor participation.

Real-Time profiling tool: Real-Time profiling tool will help the developers to tune the Real-Time performance.

Real-Time Perf optimization: Hypervisor and operating system level Real-Time performance will be optimized

Multiple IOAPIC support: some platforms (such the Denverton Atom family) have multiple physical IOAPICs, ACRN will be extended to support this.

CPU sharing: Enable scheduler in hypervisor to share physical CPU resource between all SOS & UOS vCPUs

Docker support based on Kata Containers: Make Kata/ACRN work with Docker

Zephyr as Safety OS: Zephyr will be used as safety OS which will perform the system functional safety related tasks

Kubernetes support: Make Kata/ACRN work with Kubenetes.

GVT-q Gen11 support: GVT-g support for Intel GPU device on Ice Lake platform

GVT-g for WaaG: GVT-g support Windows as Guest on ACRN